Регуляция обмена веществ и энергии. Центр регуляции обмена веществ

Нервная система регулирует обменные, энергетические и тепловые процессы в организме. Впервые это было показано в опытах Клода Бернара и И. П. Павлова. В середине прошлого века Клод Бернар, произведя укол иглой в дно IV желудочка продолговатого мозга кролика, обнаружил резкое повышение уровня сахара в крови и появление его в моче. Этот опыт получил название "сахарный укол". Впоследствии было показано, что "сахарный укол" нарушает не только углеводный, но и другие виды обмена. Под влиянием этого вмешательства у животных понижается температура печени, мышц, кишечника, повышается интенсивность белкового обмена, что сопровождается увеличенным выделением азота с мочой.

И. П. Павлов в опытах на животных показал, что при раздражении усиливающего нерва происходит повышение работоспособности сердца. Он высказал предположение о том, что это связано с трофическим влиянием нервной системы на обмен веществ в сердечной мышце. В настоящее время эти данные подтверждены экспериментально. В частности, установлено, что при раздражении усиливающего нерва в сердечной мышце увеличивается количество сократительных белков и повышается обмен АТФ. Было также показано, что раздражение симпатических нервов стимулирует распад гликогена в печени, а парасимпатических - его образование.

В дальнейшем была установлена возможность условнорефлекторных изменений уровня обмена веществ. Если многократно сочетать прием человеком сахара с одновременным включением метронома, то через некоторое время изолированное применение условного сигнала приводит к повышению содержания сахара в крови. Условнорефлекторный механизм изменения обмена веществ и энергии наблюдается у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условнорефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей и на словесный раздражитель.

Влияние нервной системы на обменные и энергетические процессы в организме опосредуется несколькими путями:

1) непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

2) опосредованное влияние нервной системы через гипофиз и его соматотропный гормон;

3) опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;



4) прямое влияние нервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. В гипоталамусе обнаружены группы ядер, которые регулируют обмен углеводов, жиров, белков, воды и солей, а также обмен тепла и потребление пищи.

Как уже указывалось, выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Так, гормоны щитовидной железы в определенных дозах, соматотропный гормон гипофиза, инсулин, половые гормоны (андрогены) усиливают синтетические процессы в организме, особенно в отношении белка (анаболическое действие гормонов). Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее действие на обменные процессы, но при этом увеличивается также выход гормонов щитовидной железы и надпочечников (тироксин и адреналин) в кровь. За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при недостатке в организме гормонов желез внутренней секреции. Так, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды).



Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.

Контрольные вопросы

1. Что называют теплообменом?

2. Каких животных называют пойкилотермными и гомойотермными?

3. За счет каких процессов образуется тепло в организме?

4. Каковы нормальные колебания температуры тела человека?

5. Что такое химическая терморегуляция? Каковы ее механизмы?

6. Что такое физическая терморегуляция? Каковы ее механизмы?

7. Что такое гипертермия? Что такое гипотермия?

8. Как меняется терморегуляция при физической нагрузке?

9. Как меняется терморегуляция при изменении температуры внешней среды?

10. Где расположены терморецепторы?

11. Где находятся центры терморегуляции?

12. Как осуществляется нервная регуляция теплообмена?

13. Как в организме осуществляется регуляция обмена веществ и энергии?

1. На сколько градусов нагреется тело человека (масса 70 кг), если

лишить его на 1 ч теплоотдачи?

2. Какое количество тепла отдает кожа человека при испарении 0,5 л пота?

ОБМЕН УГЛЕВОДОВ.

Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией.Энергетическая ценность 1 г углеводов составляет 16,7 кДж (4,0 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, выполняют пластическую и опорную функции.

Суточная потребность взрослого человека в углеводах составляет около0,5 кг. Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25-28% пищевой глюкозы превращается в жир и только 2-5% ее синтезируется в гликоген - резервный углевод организма.

Единственной формой углеводов, которая может всасываться, являются моносахара. Они всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза. Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом. В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот), что обозначается какгликонеогенез. Гликогенез, гликогенолиз и гликонеогенез - тесно взаимосвязанные и протекающие в печени процессы, обеспечивающие оптимальный уровень сахара крови.

В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликоген? процесс идет до образования пировиноградной и молочной кислот. Этот процесс называютгликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ре-синтез гликогена.

Головной мозг содержит небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга.



Образование углеводов из белков и жиров (гликонеогенез). В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот - ацетилкоэнзим А, который может превращаться в пировиноградную кислоту - предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии - углеводами и жирами - существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты.

ВОДНО-СОЛЕВОЙ ОБМЕН.

Все химические и физико-химические процессы, протекающие в организме, осуществляются в водной среде. Вода выполняет в организме следующие важнейшие функции: 1) служит растворителем продуктов питания и обмена; 2) переносит растворенные в ней вещества; 3) ослабляет трение между соприкасающимися поверхностями в теле человека; 4) участвует в регуляции температуры тела за счет большой теплопроводности, большой теплоты испарения.

Принято делить воду на внутриклеточную, интрацеллюлярную (72%) и внеклеточную, экстрацеллюлярную (28%). Внеклеточная вода размещена внутри сосудистого русла (в составе крови, лимфы, цереброспинальной жидкости) и в межклеточном пространств Вода поступает в организм через пищеварительный тракт в виде жидкости или воды, содержащейся в плотных пищевых продуктах. Некоторая часть воды образуется в самом организме в процессе обмена веществ.

При избытке в организме воды наблюдается общая гипергидратация (водное отравление), при недостатке воды нарушается метаболизм. Потеря 10% воды приводит к состоянию дегидратации (обезвоживание), при потере 20% воды наступает смерть. Вместе с водой в организм поступают и минеральные вещества (соли). Около 4% сухой массы пищи должны составлять минеральные соединения.

Важной функцией электролитов является участие их в ферментативных реакциях.

Натрий обеспечивает постоянство осмотического давления внеклеточной жидкости, участвует в создании биоэлектрического мембранного потенциала, в регуляции кислотно- основного состояния.

Калий обеспечивает осмотическое давление внутриклеточной жидкости, стимулирует образование ацетилхолина. Недостаток ионов калия тормозит анаболические процессы в организме.

Хлор является также важнейшим анионом внеклеточной жидкости, обеспечивая постоянство осмотического давления.

Кальций и фосфор находятся в основном в костной ткани (свыше 90%). Содержание кальция в плазме и крови является одной из биологических констант, так как даже незначительные сдвиги в уровне этого иона могут приводить к тяжелейшим последствиям для организма. Снижение уровня кальция в крови вызывает непроизвольные сокращения мышц, судороги, и вследствие остановки дыхания наступает смерть. Повышение содержания кальция в крови сопровождается уменьшением возбудимости нервной и мышечной тканей, появлением парезов, параличей, образованием почечных камней. Кальций необходим для построения костей, поэтому он должен поступать в достаточном количестве в организм с пищей.

Фосфор участвует в обмене многих веществ, так как входит в состав макроэргических соединений (например, АТФ). Большое значение имеет отложение фосфора в костях.

Железо входит в состав гемоглобина, миоглобина, ответственных за тканевое дыхание, а также в состав ферментов, участвующих в окислительно-восстановительных реакциях. Недостаточное поступление в организм железа нарушает синтез гемоглобина. Уменьшение синтеза гемоглобина ведет к анемии (малокровию). Суточная потребность в железе взрослого человека составляет 10-30 мкг.

Иод в организме содержится в небольшом количестве. Однако его значение велико. Это связано с тем, что йод входит в состав гормонов щитовидной железы, оказывающих выраженное влияние на все обменные процессы, рост и развитие организма.

Витамины

Витамины (от лат. «вита» - жизнь) - биологически активные вещества, необходимые для жизнедеятельности организма. Они способствуют нормальному протеканию всех жизненных процессов. Витамины были открыты русским врачом Н. И. Луниным (1853- 1937). Витамины способствуют укреплению здоровья, увеличивают сопротивляемость организма к простудным и инфекционным заболеваниям, повышают работоспособность. При недостатке того или иного витамина - гиповитаминозе - или при отсутствии витаминов - авитаминозе - наступают глубокие нарушения в процессах обмена веществ, ведущие к тяжелым заболеваниям, вплоть до гибели организма. Организм человека не способен синтезировать витамины и должен ежедневно получать их с пищей, прежде всего с растительной.

Обозначаются витамины заглавными буквами латинского алфавита: А, В, С, D, Е, К, РР, Н. Некоторые буквы, например В, охватывают целые группы: от В1 до В15.

Витамин А

Важнейший из витаминов - витамин А. Его называют витамином роста, он участвует в окислительно-восстановительных реакциях обмена. При нехватке витамина А в организме наблюдается сухость кожи, сухость роговицы глаз и ее помутнение. С недостатком витамина А связано нарушение сумеречного зрения («куриная слепота»). Наиболее богаты витамином А печень, сливочное масло, молоко, морковь, абрикосы и др.

Витамин С

Витамин С, или аскорбиновая кислота, синтезируется в растениях и накапливается в шиповнике, лимоне, черной смородине, зеленом луке, плодах клюквы и т. д. В настоящее время разработан промышленный синтез витамина С. При его недостатке развивается цинга. Особенно чувствуется нехватка витамина С к весне (у человека появляются сонливость, усталость, апатия).

Витамин D

Витамин D играет важную роль в обмене кальция, фосфора и в целом - в процессе образования костей. При отсутствии витамина D соли кальция и фосфора не откладываются н костях, а выводятся из организма и поэтому кости, особенно у детей, размягчаются. Под тяжестью тела ноги искривляются, на ребрах образуются утолщения

Четки, задерживается развитие зубов. Наиболее богаты витамином D печень рыб, сливочное масло, икра, желток яиц. Растения содержат вещество, близкое к витамину D,

Эргостерин, который под влиянием солнечных и ультрафиолетовых лучей переходит в витамин D.

Витамины группы В

Витамины группы В (В1 В2 В6 В12 и др.) регулируют многие ферментативные реакции обмена веществ, особенно обмена белков, аминокислот, нуклеиновых кислот. При их недостатке нарушаются функции нервной системы (болезнь бери-бери), желудочно- кишечного тракта (поносы), кроветворных органов (малокровие) и др. Эти витамины содержатся в печени млекопитающих и некоторых рыб, в почках, петрушке и др.

Витамин РР

Витамин РР необходим для нормальной нервно-психической деятельности.

Образование и расход энергии.

Энергия, освобождающаяся при распаде органических веществ, накапливается в форме АТФ, количество которой в тканях организма поддерживается на высоком уровне. АТФ содержится в каждой клетке организма. Наибольшее количество ее обнаруживается в скелетных мышцах - 0,2-0,5%. Любая деятельность клетки всегда точно совпадает по времени с распадом АТФ.

Разрушившиеся молекулы АТФ должны восстановиться. Это происходит за счет энергии, которая освобождается при распаде углеводов и других веществ.

О количестве затраченной организмом энергии можно судить по количеству тепла, которое он отдает во внешнюю среду. Основной обмен и его значение.

Основной обмен - минимальное количество энергии, необходимое для поддержания нормальной жизнедеятельности организма в состоянии полного покоя при исключении всех внутренних и внешних влияний, которые могли бы повысить уровень обменных процессов. Основной обмен веществ определяют утром натощак (через 12-14 ч после последнего приема пищи), в положении лежа на спине, при полном расслаблении мышц, в условиях температурного комфорта (18-20° С). Выражается основной обмен количеством энергии, выделенной организмом (кДж/сут).

В состоянии полного физического и психического покоя организм расходует энергию на: 1) постоянно совершающиеся химические процессы; 2) механическую работу, выполняемую отдельными органами (сердце, дыхательные мышцы, кровеносные сосуды, кишечник и др.); 3) постоянную деятельность железисто-секреторного аппарата.

Основной обмен веществ зависит от возраста, роста, массы тела, пола. Самый интенсивный основной обмен веществ в расчете на 1 кг массы тела отмечается у детей. С увеличением массы тела усиливается основной обмен веществ.

Средняя величина основного обмена веществ у здорового человека равна приблизительно 4,2 кДж (1 ккал) в 1 ч на 1 кг массы тела.

По расходу энергии в состоянии покоя ткани организма неоднородны. Более активно расходуют энергию внутренние органы, менее активно - мышечная ткань. Интенсивность основного обмена веществ в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Худые люди производят больше тепла на 1 кг массы тела, чем полные.

У женщин основной обмен веществ ниже, чем у мужчин. Это связано с тем, что у женщин меньше масса и поверхность тела. Согласно правилу Рубнера основной обмен веществ приблизительно пропорционален поверхности тела.

Отмечены сезонные колебания величины основного обмена веществ - повышение его весной и снижение зимой. Мышечная деятельность вызывает повышение обмена веществ пропорционально тяжести выполняемой работы.

К значительным изменениям основного обмена приводят нарушения функций органов и систем организма. При повышенной функции щитовидной железы, малярии, брюшном тифе, туберкулезе, сопровождающихся лихорадкой, основной обмен веществ усиливается. Расход энергии при физической нагрузке.

При мышечной работе значительно увеличиваются энергетические затраты организма. Это увеличение энергетических затрат составляет рабочую прибавку, которая тем больше, чем интенсивнее работа.

По сравнению со сном при медленной ходьбе расход энергии увеличивается в 3 раза, а при беге на короткие дистанции во время соревнований - более чем в 40 раз. При кратковременных нагрузках энергия расходуется за счет окисления углеводов. При длительных мышечных нагрузках в организме расщепляются преимущественно жиры (80% всей необходимой энергии). У тренированных спортсменов энергия мышечных сокращений обеспечивается исключительно за счет окисления жиров. У человека, занимающегося физическим трудом, энергетические затраты возрастают пропорционально интенсивности труда.

Для людей, выполняющих легкую работу сидя, нужно 2400 - 2600 ккал в сутки, работающих с большей мышечной нагрузкой, требуется 3400 - 3600 ккал, выполняющих тяжелую мышечную работу - 4000-5000 ккал и выше. У тренированных спортсменов при кратковременных интенсивных упражнениях величина рабочего обмена может в 20 раз превосходить основной обмен. Потребление кислорода при физической нагрузке не отражает общего расхода энергии, так как часть ее тратится на гликолиз (анаэробный) и не требует затраты кислорода.

ПИТАНИЕ:

Восполнение энергетических затрат организма происходит за счет питательных веществ. В пище должны содержаться белки, углеводы, жиры, минеральные соли и витамины в небольших количествах и правильном соотношении. Усвояемость пищевых веществ зависит от индивидуальных особенностей и состояния организма, от количества и качества пищи, соотношения различных составных частей ее, способа приготовления. Растительные продукты усваиваются хуже, чем продукты животного происхождения, потому что в растительных продуктах содержится большее количество клетчатки. Белковый режим питания способствует осуществлению процессов всасывания и усвояемости пищевых веществ. При преобладании в пище углеводов усвоение белков и жиров снижается. Замена растительных продуктов продуктами животного происхождения усиливает обменные процессы в организме. Если вместо растительных давать белки мясных или молочных продуктов, а вместо ржаного хлеба - пшеничный, то усвояемость продуктов питания значительно повышается.

Таким образом, чтобы обеспечить правильное питание человека, необходимо учитывать степень усвоения продуктов организмом. Кроме того, пища должна обязательно содержать все незаменимые (обязательные) питательные вещества: белки и незаменимые аминокислоты, витамины, высоконепредельные жирные кислоты, минеральные вещества и воду.

Основную массу пищи (75-80%) составляют углеводы и жиры.

Пищевой рацион - количество и состав продуктов питания, необходимых человеку в сутки. Он должен восполнять суточные энергетические затраты организма и включать в достаточном количестве все питательные вещества.

Для составления пищевых рационов необходимо знать содержание белков, жиров и углеводов в продуктах и их энергетическую ценность. Имея эти данные, можно составить научно обоснованных пищевой рацион для людей разного возраста, пола и рода занятий.

Режим питания и его физиологическое значение.

Необходимо соблюдать определенный режим питания, правильно его организовать: постоянные часы приема пищи, соответствующие интервалы между ними, распределение суточного рациона в течение дня. Принимать пищу следует всегда в определенное время не реже 3 раз в сутки: завтрак, обед и ужин. Завтрак по энергетической ценности должен составлять около 30% от общего рациона, обед - 40-50%, а ужин - 20-25%. Рекомендуется ужинать за 3 ч до сна.

Правильное питание обеспечивает нормальное физическое развитие и психическую деятельность, повышает работоспособность, реактивность и устойчивость организма к влиянию окружающей среды.

Согласно учению И. П. Павлова об условных рефлексах, организм человека приспосабливается к определенному времени приема пищи: появляется аппетит и начинают выделяться пищеварительные соки. Правильные промежутки между приемами пищи обеспечивают чувство сытости в течение этого времени.

Трехкратный прием пищи в общем физиологичен. Однако предпочтительнее четырехразовое питание, при котором повышается усвоение пищевых веществ, в частности белков, не ощущается чувство голода в промежутках между отдельными приемами пищи и сохраняется хороший аппетит. В этом случае энергетическая ценность завтрака составляет 20%, обед - 35%, полдник-15%, ужин - 25%.

Рациональное питание. Питание считается рациональным, если полностью удовлетворяется потребность в пище в количественном и качественном отношении, возмещаются все энергетические затраты. Оно содействует правильному росту и развитию организма, увеличивает его сопротивляемость вредным воздействиям внешней среды, способствует развитию функциональных возможностей организма и повышает интенсивность труда. Рациональное питание предусматривает разработку пищевых рационов и режимов питания применительно к различным контингентам населения и условиям жизни.

Как уже указывалось, питание здорового человека строится на основании суточных пищевых рационов. Рацион и режим питания больного называются диетой. Каждая диета имеет определенные составные части пищевого рациона и характеризуется следующими признаками: 1) энергетической ценностью; 2) химическим составом; 3) физическими свойствами (объем, температура, консистенция); 4)режимом питания.

Принципы составления пищевых рационов

Питание должно точно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма. При составлении пищевого рациона (т. е. количества и состава продуктов питания, необходимых человеку в сутки) следует соблюдать ряд принципов.

1. Калорийность пищевого рациона должна соответствовать энергетическим затратам организма, которые определяются видом трудовой деятельности.

2. Учитывается калорическая ценность питательных веществ, для этого используются специальные таблицы, в которых указано процентное содержание в продуктах белков, жиров и углеводов и калорийность 100 г продукта.

3. Используется закон изодинамии питательных веществ, т. е. взаимозаменяемость белков, жиров и углеводов, исходя из их энергетической ценности. Например, 1 г жира (9,3 ккал) можно заменить 2,3 г белка или углеводов. Однако такая замена возможна только на короткое время, так как питательные вещества выполняют не только энергетическую, но и пластическую функцию.

4. В пищевом рационе должно содержаться оптимальное для данной группы работников количество белков, жиров и углеводов, например, для работников 1-й группы в суточном рационе должно быть 80 -120 г белка, 80 -100 г жира, 400 - 600 г углеводов.

5. Соотношение в пищевом рационе количества белков, жиров и углеводов должно быть 1:1,2:4.

6. Пищевой рацион должен полностью удовлетворять потребность организма в витаминах, минеральных солях и воде, а также -одержать все незаменимые аминокислоты (полноценные белки).

7. Не менее одной трети суточной нормы белков и жиров должно поступать в организм в виде продуктов животного происхождения.

8. Необходимо учитывать правильное распределение калорийности рациона по отдельным приемам пищи. Первый завтрак должен содержать примерно 25-30% всего суточного рациона, второй завтрак - 10-15%, обед 40 - 45% и ужин - 15-20%.

Регуляция обмена веществ и энергии.

Условно-рефлекторные изменения обмена веществ и энергии наблюдаются у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условно-рефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей на словесный раздражитель.

Влияние нервной системы на обменные и энергетические процессы в организме осуществляется несколькими путями:

Непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

Опосредованное влияние нервной системы через гипофиз (соматотропин);

Опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;

Прямое влияние нервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. Выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее влияние на обменные процессы, но при этом увеличивается секреция гормонов щитовидной железы и надпочечников (тироксин и адреналин). За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при дефиците в организме гормонов желез внутренней секреции. Например, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды). Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.

Веществ и энергии, или метаболизм – физиологические процессы обеспечения организма необходимыми для его нормального функционирования соединениями, их превращение, получение энергии и выведения во внешнюю среду ненужных соединений произошедших реакций.

В узком смысле, метаболизм – это пути превращений определенного соединения или соединений в организме.

Метаболизм состоит из двух процессов:

  • Пластический обмен , анаболизм, ассимиляция, или синтез. Это поступление в организм через пищеварительную систему воды, белков, жиров, углеводов, минеральных солей, витаминов, через дыхательную систему, кожу - кислорода для построения мембран, клеточных структур и их обновления. Анаболические реакции – это реакции, участвующие в синтезе новых молекул, протекают с поглощением энергии.
  • Энергетический обмен , катаболизм, диссимиляция, или распад. Это процессы выведения из организма отработанных продуктов, осуществляется через органы пищеварительного тракта, легкие, почки, кожу. Катаболические реакции – это реакции распада, протекающие с выделением энергии. Во время процессов энергетического обмена часть энергии рассеивается в виде тепла, а часть запасается в определенных органических веществах в виде макроэргических связей. Универсальным химическим аккумулятором энергии является АТФ – аденозинтрифосфорная кислота.

Все реакции анаболизма и катаболизма протекают с помощью энзимов (ферментов) – биологических катализаторов.

В процессе обмена веществ постоянно образуются, обновляются, расщепляются клеточные структуры, появляются и разрушаются разнообразные химические соединения. Все это сопровождается превращениями энергии: потенциальная энергия веществ, освобождаемая при расщеплении, переходит в кинетическую энергию, представленную, главным образом тепловой и механической энергиями, частично – электрической энергией.

Поступление в организм различных веществ из внешней среды необходимо для:

  1. Возмещения энергозатрат.
  2. Удовлетворения потребностей роста
  3. Сохранения массы тела.

При этом количество питательных веществ, их соотношение и свойства должны согласовываться с условиями жизни и общим состоянием организма.

Все реакции пластического и энергетического обмена протекают совместно, переходя друг в друга в организме в течение всей жизни. В раннем возрасте преобладают реакции анаболизма, когда наблюдается интенсивный рост и развитие организма. По мере старения в организме начинают преобладать процессы катаболизма, синтез новых веществ постепенно угнетается.

Виды обмена веществ

Основными веществами, поступающими в организм человека, являются вода, минеральные соли, органические вещества: белки, витамины, углеводы и жиры. Для каждого вещества характерен свой путь метаболизма.

Существуют следующие виды обмена веществ:

  • обмен воды и минеральных солей;
  • обмен белков;
  • обмен жиров;
  • обмен углеводов.

Замечание 1

Большинство витаминов входят в состав ферментов, поэтому они выполняют в основном функцию катализаторов биохимических процессов.

Регуляция обмена веществ

Под регуляцией обмена веществ рассматривается регуляция почти всех функций организма: пищеварения, кровообращения, дыхания, выделения и др.

Основную роль в регуляции обмена веществ играет эндокринная система. Гормоны оказывают воздействие на скорость протекания биохимических процессов непосредственно в клетке. При совокупном их воздействии на отдельные клетки происходит изменение в функционировании организма в целом. К примеру,

  • гормон гипофиза - соматотропный гормон проявляет выраженное анаболическое действие, он повышает синтез пластических веществ, ускоряет рост;
  • катехоламины надпочечников усиливают энергообразование через окислительные процессы;
  • тироксин и трийодтиронин – гормоны щитовидной железы – активируют разрушение углеводов и жиров, стимулируют образование белка из аминокислот.

В регуляции обмена веществ принимает участие нервная система – гипоталамус, который включает центры жажды, голода и насыщения, терморегуляции. Регуляция осуществляется через вегетативную нервную систему.

Замечание 2

Гипоталамус и гипофиз координируют функционирование почти всех желез внутренней секреции.

В процессе жизнедеятельности уровень метаболизма все время подвержен значительным колебаниям, обеспечивая наилучшие условия для выполнения приспособительных функций организма.

Точное соответствие изменений метаболизма потребностям организма достигается благодаря очень тонким регуляторным процессам. При этом регуляция обмена направлена главным образом на изменение интенсивности процессов ассимиляции и диссимиляции в клетках и тканях организма при выполнении ими специализированных функций, таких, напр., как секреция, мышечные сокращения, нервное возбуждение, а также при их росте и размножении. Регулирование этих процессов осуществляется по принципу саморегуляции. Определяющим моментом в этой деятельности всегда является тот уровень обмена внутри организма, который обеспечивает оптимальные условия для его жизнедеятельности. Во всех случаях, когда этот важный для деятельности организма уровень обмена веществ по тем или иным причинам изменяется, развивается целая цепь самых разнообразных процессов, направленных на его восстановление. Прежде всего, мобилизуются специальные резервы организма. Затем, когда эти резервы подвергаются угрозе полного израсходования, включаются механизмы потребления необходимых веществ из внешней среды. В случае, если из внешней среды необходимые вещества долгое время не поступают, клетки переходят на более экономный режим работы (сокращение потерь тепла вплоть до развития анабиотического состояния).

В организме можно выделить несколько уровней регуляции метаболизма. Регуляция обмена веществ происходит уже непосредственно в самих клетках и тканях организма. Здесь уровень обмена, обеспечивающий их пластические функции, прежде всего определяется генетическим аппаратом клеток. Вместе с тем, как показали исследования Ф. 3. Меерсона и сотр., генетический аппарат клетки, от которого зависит уровень ее обмена, не является консервативным, а, как правило, может изменяться при изменении интенсивности ее специализированной деятельности.

С другой стороны, регуляция внутриклеточного обмена веществ осуществляется также за счет изменения в клетках и тканях содержания различных веществ, участвующих в их жизнедеятельности (вода, глюкоза, жиры, белки, кислород, витамины и др.). Так, при уменьшении поступления кислорода к клеткам в них немедленно развиваются процессы анаэробного расщепления углеводов; при недостатке углеводов накапливаются кетоновые тела. Накопление в тканях молочной кислоты (нередкое при усиленной мышечной деятельности) также вызывает расстройства их нормальной жизнедеятельности. Установлено, что некоторые продукты промежуточного обмена (янтарная, фумаровая кислоты, креатин, АДФ и др.) обладают способностью повышать интенсивность окислительных процессов.

На уровень обмена в тканях существенное влияние могут оказывать и физические факторы (температура, радиация и т. д.). Они могут ускорить метаболизм или, наоборот, резко понизить его вплоть до развития состояния анабиоза (см.).

Несмотря на то что уровень обмена веществ в тканях исключительно хорошо регулируется на клеточном и молекулярном уровне, изменения метаболизма в интересах целого организма происходят только на основе гуморальной и нервной регуляции.

На обмен веществ целого организма оказывает отчетливое действие ряд гормонов. Так, напр., гормон щитовидной железы тироксин усиливает обмен белка. Соматотропный гормон гипофиза способствует росту тканей, адреналин (гормон надпочечников) и инсулин (гормон поджелудочной железы) влияют на обмен углеводов. На жировой обмен оказывают влияние гормоны гипофиза, половых желез, щитовидной железы, надпочечников и поджелудочной железы.

Нервная регуляция обмена веществ осуществляется преимущественно вегетативной нервной системой путем ее влияния как на железы внутренней секреции, так и непосредственно на обмен веществ в тех или иных органах (так называемое трофическое действие). Такие влияния впервые были показаны Гейденгайном (В. Р. Н. Heidenhain) на слюнной железе, в дальнейшем И. П. Павловым на сердце, Гинецинским - на поперечнополосатых мышцах (феномен Орбели - Гинецинского). Нервное влияние на углеводный обмен впервые было обнаружено Бернаром (С. Bernard) при уколе в дно IV желудочка (сахарный укол). При таком уколе количество глюкозы в крови резко возрастает. При некоторых повреждениях ствола мозга увеличиваются белковый обмен и выведение азота с мочой.

Нервные центры, оказывающие влияние на обмен, были обнаружены в гипоталамической области (см. Гипоталамус). При повреждении гипоталамуса многие авторы наблюдали у животных ожирение. Помимо этого, в гипоталамусе сосредоточен центр, регулирующий поступление питательных веществ из внешней среды. Именно здесь производится постоянная «оценка» количества поступающих в организм питательных веществ в соответствии с уровнем метаболизма, а также регулируется уровень энергетических расходов в связи с различной его деятельностью.

При поражениях гипоталамуса наблюдаются комплексные расстройства регуляции обмена, которые проявляются в изменении приема пищи, мышечной деятельности, основного обмена, нарушении функции депонирующих механизмов и т. д. При этом нередко наблюдаются такие патологические нарушения, при которых интенсивность метаболизма внутри организма перестает соответствовать количеству принимаемых извне веществ. В результате этого развиваются такие заболевания, как кахексия, ожирение.

Важно подчеркнуть, что уже гипоталамические механизмы обеспечивают регуляцию обмена с опережением реальных событий (П. К. Анохин). Так, центры гипоталамуса определяют значительное снижение расхода питательных веществ еще задолго до того, как будет исчерпан весь запас питательных веществ в организме. И, наоборот, эти же центры обусловливают резкое ускорение метаболизма во время приема пищи, когда питательные вещества еще не успели поступить в кровь. Опережающие последующую деятельность изменения метаболизма наиболее отчетливо выражены в целостной приспособительной деятельности организма. Она осуществляется уже регуляторными механизмами коры головного мозга. Примером таких опережающих последующие явления изменений метаболизма может служить предстартовое повышение обмена веществ у спортсменов, а также обнаруженные исследованиями школы К. М. Быкова опережающие движение поезда изменения метаболизма у железнодорожников. Все такого рода изменения обмена веществ и энергии развиваются путем неоднократных повторений определенных ситуаций и формируются на основе механизма условного рефлекса (см.).

обмен вещество углевод витамин

Регуляция обмена веществ в организме человека

Удивительная согласованность и слаженность процессов обмена веществ в живом организме достигается путём строгой и пластичной координации обмена веществ, как в клетках, так и в тканях и органах. Эта координация определяет для данного организма характер обмена веществ, сложившийся в процессе исторического развития, поддерживаемый и направляемый механизмами наследственности и взаимодействием организма с внешней средой .

Обычно у взрослого здорового человека устанавливается равновесие между суточной затратой веществ и энергии и поступлением питательных веществ. Тогда вес тела остается без изменений. Если поступления питательных веществ недостаточно для пополнения затрат, то организм начинает расходовать свои запасы. Это приводит к потере веса. При избытке поступающих в организм питательных веществ, по сравнению с расходами тела, равновесие также нарушается, и человек начинает прибавлять в весе.

Уровень обмена веществ может под влиянием тех или иных причин повышаться или понижаться. Например, при усиленной физической работе жизнедеятельность мышц повышается. Наблюдающееся одновременно усиление процессов диссимиляции вызывает увеличение, повышение процессов ассимиляции.

Известно, что если какие-либо мышцы тела усиленно работают, то они через некоторое время увеличиваются в объеме. Слабая работа мышц ведет к понижению обмена, а следовательно, и процессов ассимиляции, что приводит к уменьшению объема мышц. В растущем организме увеличивается количество клеток вследствие их размножения. Важную роль в обмене веществ играют витамины.

Регуляция всех процессов обмена веществ осуществляется в основном центральной нервной системой. Возбуждения, которые передаются работающему органу через нервную систему, оказывают большое влияние на процессы ассимиляции и диссимиляции.

Влияние нервной системы на обмен веществ было доказано при изучении влияния нерва, усиливающего деятельность сердца. При раздражении этого нерва наблюдается увеличение силы сокращения сердца без учащения его ритма. Это объясняется изменением интенсивности обмена веществ в сердечной мышце. Эта функция нервной системы названа трофической (от греческого слова «трофос» - пища), т. е. управляющей питанием, жизнедеятельностью органа, его обменом веществ. Учение о трофической функции нервной системы было в дальнейшем разработано советскими физиологами.

В лаборатории было изучено влияние коры головного мозга на обмен веществ. Была доказана зависимость обмена веществ от коры головного мозга. В одном из опытов было установлено, что при одной только мысли о физической работе обмен веществ повышался.

Регуляция обмена веществ на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном. Различные промежуточные продукты обмена веществ, действуя на определённый участок молекулы ДНК, в котором заключена информация о синтезе данного фермента, могут индуцировать (запускать, усиливать) или, наоборот, репрессировать (прекращать) его синтез.

Так, кишечная палочка при избытке изолейцина в питательной среде прекращает синтез этой аминокислоты. Избыток изолейцина действует двояким образом:

а) угнетает (ингибирует) активность фермента треониндегидратазы, катализирующего первый этап цепи реакций, ведущих к синтезу изолейцина, и

б) репрессирует синтез всех ферментов, необходимых для биосинтеза изолейцина (в т. ч. и треониндегидратазы).

Ингибирование треониндегидратазы осуществляется по принципу аллостерической регуляции активности ферментов.

Предложенная французскими учёными Ф. Жакобом и Ж. Моно теория генетической регуляции рассматривает репрессию и индукцию синтеза ферментов как две стороны одного и того же процесса. Различные репрессоры являются в клетке специализированными рецепторами, каждый из которых «настроен» на взаимодействие с определённым метаболитом, индуцирующим или репрессирующим синтез того или иного фермента.

Таким образом, в клетки, полинуклеотидных цепочках ДНК заключены «инструкции» для синтеза самых разнообразных ферментов, причём образование каждого из них может быть вызвано воздействием сигнального метаболита (индуктора) на соответствующий репрессор.

Важнейшую роль в регуляции обмена веществ и энергии в клетках играют белково-липидные биологические мембраны, окружающие протоплазму и находящиеся в ней ядро, митохондрии, пластиды и др. субклеточные структуры. Поступление различных веществ в клетку и выход их из неё регулируются проницаемостью биологических мембран .

Значительная часть ферментов связана с мембранами, в которые они как бы «вмонтированы». В результате взаимодействия того или иного фермента с липидами и др. компонентами мембраны конформация его молекулы, а, следовательно, и его свойства как катализатора будут иными, чем в гомогенном растворе, Это обстоятельство имеет огромное значение для регулирования ферментативных процессов и обмена веществ в целом.

Важнейшим средством, с помощью которого осуществляется регуляция обмена веществ в живых организмах, являются гормоны. Так, например, у животных при значительном понижении содержания caxapa в крови усиливается выделение адреналина, способствующего распаду гликогена и образованию глюкозы. При избытке сахара в крови усиливается секреция инсулина, который тормозит процесс расщепления гликогена в печени, вследствие чего в кровь поступает меньше глюкозы.

Важная роль в механизме действия гормонов принадлежит циклической аденозинмонофосфорной кислоте (цАМФ). У животных и человека гормональная регуляция обмена веществ тесно связана с координирующей деятельностью нервной системы .

Благодаря совокупности тесно связанных между собой биохимических реакций, составляющих обмен веществ осуществляется взаимодействие организма со средой, являющееся непременным условием жизни. Ф. Энгельс писал: «Из обмена веществ посредством питания и выделения... вытекают все прочие простейшие факторы жизни...».

Таким образом, развитие (онтогенез) и рост организмов, наследственность и изменчивость, раздражимость и высшая нервная деятельность - эти важнейшие проявления жизни могут быть поняты и подчинены воле человека на основе выяснения наследственно обусловленных закономерностей обмена веществ и сдвигов, происходящих в нём под влиянием меняющихся условий внешней среды (в пределах нормы реакции данного организма).